-4z^2=-16+6z^2

Simple and best practice solution for -4z^2=-16+6z^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4z^2=-16+6z^2 equation:



-4z^2=-16+6z^2
We move all terms to the left:
-4z^2-(-16+6z^2)=0
We get rid of parentheses
-4z^2-6z^2+16=0
We add all the numbers together, and all the variables
-10z^2+16=0
a = -10; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-10)·16
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*-10}=\frac{0-8\sqrt{10}}{-20} =-\frac{8\sqrt{10}}{-20} =-\frac{2\sqrt{10}}{-5} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*-10}=\frac{0+8\sqrt{10}}{-20} =\frac{8\sqrt{10}}{-20} =\frac{2\sqrt{10}}{-5} $

See similar equations:

| x+(0.05x)=500 | | 13+t10=-55 | | -2z=2z-4 | | x=(0-9+2x-5) | | 4x+16-96=2x+8-8x | | 16+x^2/2=0 | | x+(0.5x)=500 | | (8x-3)=(7x+7) | | 1/6b+4=14 | | 5a+15=8 | | x/10+2=8 | | 8p-5=77 | | 6x-8=16+x^2/2 | | 4,3-2x=0,5-4,3 | | x/x-3=x+4/x | | -20-6y=-4y | | 0.05x-2=8 | | 7s-22=62 | | y=220(1+0.0325)*^6 | | x/2-5=14 | | (3/5)9x+2)=x-4 | | -2|y|=-20 | | 5(x-8)^2=25 | | 30=2/5y | | x+1/5=x-1/2 | | 2k^2-8k-4=0 | | -14-y=y | | (5x/6)-2=8 | | -4=12+a | | 15=-3x-2(-3+11) | | 2x+34+4x+38=180 | | (3x-1)+(4x-10)+58=180 |

Equations solver categories